

Next Generation Network (NGN) and Reliability

Pertti Raatikainen VTT

Copyright © VTT

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Outline

- Overview of NGN
 - Architecture
 - Functionality
 - IMS
- About reliability

What is NGN?

- ITU-T defined telecommunications network architectures and technologies
- Covers conventional PSTN services as well as packet based services
- All information is carried in packet (switched) form as in the Internet
- Packets are labelled based on their type (e.g. data, voice and video) and forwarded based on their QoS and security parameters
- Clear distinction between the transport and services
 - => allows smooth introduction of new services
 - => services defined directly at the service layer (transport not considered)

NGN functionality

- NGN functions are divided into service and transport layers
- End-user functions are connected to NGN by UNI
- Networks are interconnected by NNI
- Third party applications utilize ANI

VII

5

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Transport functions

- Transport layer functions provide connectivity for all components and physically separated functions within an NGN
- Internet Protocol (IP) is the most obvious NGN transport technology
 transport layer will provide IP connectivity for
 - end-user equipment (residing outside an NGN)
 - various controllers and enablers that are usually located in servers within the area of an NGN
- Transport layer is further divided into access and core network

Access network functions

Access functions

- access technology dependent
- manage end-user access to an NGN network
- examples of supported technologies: cable access, DSL, wireless technology, Ethernet technology and optical access

Access transport functions

- responsible for carrying information across the access network
- support of QoS (packet filtering, buffer management, traffic classification, policing, traffic shaping, etc.)

Edge functions

 for traffic processing when access traffic is merged into the core network

VIII

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Core network functions

Core transport functions

- ensure information transport through the core network
- provide means to differentiate the quality of transport by interacting with the transport control functions
- support of QoS (buffer management, packet filtering, traffic classification, marking, policing and shaping, firewalls, etc.)

• Network attachment control functions (NACF)

- provide registration at the access level and initialisation of end-user functions to allow access to NGN services
- support network-level identification and authentication, manage IP address space of the access network, authenticate access sessions, etc.

Core network functions (cont.)

- Resource and admission control functions (RACFs)
 - offer admission control and gate control functionality, such as control of network address and port translation (NAPT) and management of differentiated services field code points (DSCPs)
- Transport user profile functions
 - comprise user and control information to form a single "user profile" function in the transport layer
- Gateway functions
 - support capabilities to interwork with other networks, e.g. PSTN/ ISDNbased networks and the Internet
- Media handling functions (MHF)
 - supply services, such as tone signal generation, transcoding and conference-call bridging

VIII

9

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Service functions

- NGN supports
 - session-based services, e.g. IP telephony and video conferencing
 - non-session-based services, e.g. video streaming and broadcasting
- NGN supports also network functionality associated with
 - existing PSTN/ISDN services and capabilities
 - interfaces to legacy customer equipment

Service functions (cont.)

Service and control functions

• session control functions, registration function and authentication & authorization functions (at the service level)

Service user profile functions

 cover user and other control information that form a single user profile function in the service layer

Application functions

- trusted and/or untrusted
- used by third-party service providers to access NGN service layer capabilities and resources through servers or gateways in the service layer

1

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Management functions

- Enable an NGN operator to
 - manage the network
 - provide NGN services with required quality, security and reliability
- Distributed to each functional entity
- Interact with the network element management, network management and service management functional entities
- Include charging and billing functions, which interact with each other to collect resource utilisation information

End-user functions

- End-users interfaces are
 - physical
 - functional (control) interfaces
- ITU-T specifications do not limit the types of customer interface that can be connected to an NGN network
- NGN supports all kinds of customer equipment categories
 - from single-line legacy telephones to complex corporate networks
 - mobile and fixed

13

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

IP multimedia subsystem (IMS)

- IMS has a central role in providing session based services for NGN
- IMS is based on IETF defined IP protocols
- 3GPP (3rd Generation Partnership Project) has defined IMS for mobile networks later introduced for NGN.
- IMS is mostly independent of the access network technology, although there are some transport specific aspects
- Basic signaling protocol is SIP (Session Initiation Protocol)
 - · used to create, modify and terminate sessions

IMS architecture

- IMS makes separation between the core and access network
- Separation comes from 3GPP's original IMS definitions, i.e. from the wireless network model (in which one or more radio access networks are connected to a common core network)
- Radio access networks provide connections between terminals and services available in the core
- Access network is a collection of entities providing IP transport connectivity between a user domain and a core transport network
 - different sorts of access networks are distinguished based on the underlying technology, ownership or administrative partitioning

VIII

15

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

IMS architecture (cont.)

- IMS defines a collection of core network functional entities that the core uses in offering IP transport connectivity
 - between an access network and a core transport network
 - between two access networks
 - between two core networks
- Core network also offers connectivity to service layer entities
- Core networks can differ from one another according to the underlying technology, ownership or administrative partitioning
- A fundamental characteristic of an IMS is the support of user mobility
 - the distinction between the core and access networks has significance, especially when dividing the functions necessary to support an IMS

Network partitioning in respect of IMS

17

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

IMS functional entities

- Application server (AS) provides service control for the IMS
- Gateway control function (BGCF) receives session requests forwarded by an S-CSCF (or another BGCF) and selects the network in which a PSTN attachment point is located
- Call Session Control Functions (CSCF) are responsible for the control of session features, routing and resource allocation in cooperation with other network elements
- Home Subscriber Server (HSS) contains a subscription database for IMS
- Media Gateway Control Function (MGCF) supports interworking between IMS and PSTN

IMS functional entities (cont.)

- Media Gateway (MGW) terminates bearer channels from circuit-switched networks and media streams from packet switched networks and performs media conversion functions such as transcoding
- Media Resource Function Controller (MRFC) controls MRFP's media stream resources
- Media Resource Function Processor (MRFP) supports functions such as media stream mixing, tone and announcement generation, transcoding and media analysis
- Subscription Locator Function (SLF) acts as a front-end for distributed HSS systems
- User Equipment (UE) represents the functionality of user terminals

19

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

IMS functional entities and reference points

NGN and reliability

- NGNs are going to be a mixture of circuit and packet switched networks and technologies
 - => not easy to say whether reliability of an NGN network is closer to that of a conventional PSTN network or the Internet

VII

21

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Performance concerns

- Open and distributed nature
- Lack of inherent security mechanisms
- Increasingly complicated network concept
- Running of mission-critical applications
- Deployed before fully matured
- Few expert solutions for effective management
- Require time- and cost-consuming integration and configuration

Open and distributed nature

- Any company or any person can develop applications and run them on an NGN network
- Difficult to prepare for possible malicious applications, either end-user or control applications
- Distributed nature means that it is difficult to locate and eliminate observed disturbances, especially in cases when the disturbance is able to move in the network and/or make copies of itself to various locations of the network

√**V**IT

23

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Lack of inherent security mechanisms

- Secure PSTN functions are modified to adapt to the packet switching paradigm
 - => security of communication often degraded
- An example is the numbering scheme (E.164) that needs to be modified to allow the internet type of addressing mechanism
 - new telephone number mapping (ENUM) scheme builds on the Internet's domain name server system (DNS)
 - introduces similar performance problems as present in the DNS system (examples are the distributed denial of service (DDOS) and DNS pollution problems)

Running of mission-critical applications

- Mission-critical applications, such as banking, medical systems and power station control, require error-free transport, short response times and absolute security
- Pure Internet type of data transport does not guarantee delivery of IP packets to their intended destinations
 - packets may be dropped, delayed or directed to false destinations
 - increase of network load increases delay and number of dropped packets
- Spoofing is a known problem in conventional IP networks and NGN's open architecture preserves that problem
 - spoofing stands for the various techniques that enable unauthorised access to computers and user information
 - examples of spoofing techniques are the man-in-the-middle, source routing and flooding

.

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Deployed before fully matured

- Increasingly complicated network concept
 - integration of conventional network technology with the all-IP technology no doubt increases complexity
- Few expert solutions for effective management
- Require time- and cost-consuming integration and configuration
 - implementation of new solutions to run smoothly with the conventional technology is going to be time-consuming and costly
 - there is a lack of trained professionals to deal with the new technology and its problems

Enhanced internet quality

- Main difference between the Internet and NGN is the IMS, which
 - builds on IETF protocols
 - but implements specific profiles and enhancements to provide a robust multimedia system
- Enhancements and operational profiles offer support for operator control, billing and security

√**V**TT

27

VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Enhanced internet quality

- IMS provides:
 - common interfaces to application servers for accounting, security, subscription data, service control and service building blocks
 - · coordinated and enforced QoS
 - session-based media gating under operator control
 - accounting and charging among the service, session and transport layers
 - => IMS and thus NGN is different from the Internet on session control point of view
 - => Network operator controls access to the network and a service provider controls access to the services
- This is contradictory to the usual Internet model in which the network is transparent and all services are provided by endpoints

Conclusions

- NGN is more controllable and therefore more reliable than the usual Internet, but
- it is difficult to see how NGN will provide the same level of performance reliability as the old established PSTN used to have
- => NGN does not offer perfect performance (reliability), but the level that the users accept

