Swarm-based routing to achieve dependable networks

Bjarne E. Helvik
Centre for Quantifiable Quality of Service in Communication Systems – CoE
E-mail: bjarne@q2s.ntnu.no

Dependability of all-IP networks
A multi-disciplinary workshop

Date: May 18-19, 2006
Venue: VTT, Espoo, Finland

Introduction

- Objectives
 - Understanding how swarm based routing works
 - Pros & Cons vs. "standard routing"
 - Combination with stochastic optimization; the CE-Ants
 - Activities at NTNU

- Outline
 - Routing
 - Swarm based routing
 - CE-Ants, The mathematical foundation without any math.
 - Examples
 - Primary-backup
 - The BISON demo
 - Dealing with network dynamics
 - Closing
Routing

- Currently in the Internet
 - Intradomain; OSPF, IS-IS (Link weight)
 - Interdomain; BGP (Distance vector), Policies
 - Based on Dijkstra’s shortest path algorithm

- Requirements
 - One or more paths between end nodes
 - Fast/immediate re-establishment of paths after failures
 - Optimal resource usage; Adaptation to topology & traffic load
 - Inherent robustness and stability

Swarm based routing

- Small simple mobile agents (ants)
- Swarms of co-operating agents
- Indirect communication
- One specie per task/policy
- Collective problem solving / optimization / arbitration
History

- **Nature inspired; Routing and load balancing**
 - Steward & Appleby, 1994
 - Schoonderwoerd & al., 1996
 - Subramanian & al., 1997
 - ...

- **Nature inspired; Optimization**
 - Colorni & al., 1991
 - Dorigo & Di Caro 1997
 - ...

- **Rare event theory; Optimization**
 - Rubinstein, 1999
 - ...

- **Optimization based distributed path management**
 - Helvik & Wittner, 2001
 - ...

Some Results

- **Di Caro and Dorigo.** *AntNet: Distributed Stigmergetic Control for Communications Networks.* Artificial Intelligence Research, 1998.

Finding the optimal path by "pure chance" is a rare event.

- Importance sampling like technique is used to find good solutions (combination of paths).

- Routing probabilities are gradually tuned by
 - Minimizing the cross entropy (Kullback-Leibler distance) between these and the optimal importance sampling probabilities.
 - Putting gradually increasing weight on good solutions.

- Autoregressive computations.
- Simplified computation by low order approximations.
 - Efficient.
 - Low memory requirements.
 - Compact & simple implementation.

- Distributed & autonomous operation.
- Target specific heuristics.

Simple agent code! Really robust!!
Primary back-up; Shared resource principle

- Primary and backup paths btw. i and l, and j and n
- Capacity of link j, k

- One species per path type (e.g. 4)
- Objectives/policies
 - Fault-free ➔ no overload
 - Single link failure ➔ no overload
 - Primary and back-ups ➔ disjoint
 - Common primary link ➔ disjoint back-ups
- Policies heuristically embedded in ant/agent behaviour
Activities

Done
- Hamilton cycles in (sparse) networks; NP-hard proof of concept
- Preparing primary and back-up paths; Load distribution
 - Implementing policies
- P-cycles (Hamiltonian) [More to be done]
- Resource search with QoS constraints; Scalability [More !]
- Stochastic routing

On-going
- Dependability evaluation
- Dynamic networks (Topology and traffic changes); Adaptivity
- Demonstrator / Laboratory

On the agenda
- Wireless mesh networks
- Dependability differentiation
 - ... and more ...

Swarm intelligence based routing
AntPing - demo

PEH, April 06
BISON final review meeting, Paris, France
Adaptability

- Topology changes
 - Failure & repairs
 - Rearranging
- Traffic
 - Load
 - Interests
- Prototype trace
 - Stochastic routing
 - Stigmetrics remembered in nodes
 → Fast reroute
 - Some limitations in prototype implementation

Recent publications; Recommended reading

Remaining challenges

- Scalability
 - Node storage of “stigmetrics”
 - Feasibility for interdomain routing
 - Multiple requirements

- Security!

- Acceptance by network operators
 - Guaranteeing convergence and stability
 - First use for monitoring and management advice (AntPing)

- Trade offs
 - “Optimality” of routing
 - Time / responsiveness
 - Resource utilization

- … and more
Concluding remarks

- Another routing / path management paradigm
- Distributed, adaptive and inherently robust
- My provide resilience “features” in the future internet overcoming
 - Limitation of the “shortest” path
 - The restoration delay
 - Centralized planning and/or management
- Still work to be done

Questions?